

SECURITY CLASSIFICATION OF THIS PAGE ('lt_him Data Entered)

PAGE RgAD DIS_uc'r[oNsREPORTDOCUMEHTATION BZFOR,_CO.m.E_n_GFOml
1. REPORT NUMBER 2. GOVT ACCES.%ION NO. 3. REClPIENT°S CATALOG HUMBER

AT.GO PUB 0125

4. TITLE (rand Subtitle) S. TYPE OF REPORT & PERIOD COVIrRI[D

Applications of Parallelism to PTNAL
Current Alqorithms for _ntelliqence s. PE.rOR.iNGORG.REPORTNUMeER

Analysis D-4719
• . AUT.DR_,) S. COHTRACTORGRANTNUM_E"V,)
Dr. Ann Griese], Steve ;lughes,
Reth Moore

HAS7-918

_9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREAi ,OaK UNITNUM.E,S
Jet Propulsion Laboratory, ATTN: 171-2Z9
California Tnstitute of Technology

48Z0 Oak Grove, Pasadena, CA 9]IZ9 RF. 182 AMEND _187

,i.COHTROLLINGOFFICENAME AND ADDRESS I*.REPORT DATE
Commander, USAICS i_ 3ol 87

7_ ATTN: ATSI-CD-SF I,.NUMSEROF PAGES

At. Huachuca, AZ
85613-7ZZZ 21

_ 14. MONITORING AGENCY NAME & ADDRESS('/.* dlllermtl Irma Control|irql Olflce) 15. SECURITY CLASS. ('o! tale ;'&_-..;t/)

Commander, USAICS UNCT.ASSIFIED

ATTN- ATST-CD-SF" 1so. DECLASSIFICATION/DOWNGRADING
- SCHEDULE

_t. Huachuca, AZ 85613-7000 NONE
16. DISTRIBUTION STATEMENT (ol talc Report)

Approved for Public Disseminatlon

17. DISTRIGUTIDH STATEME_'T (of the abetro©t ento.Jd in Block 20, If dlftertmt Irom Report)

_, IS SUPPLEME,TARYHOTES

Prepared bv Jet Propulsion T.aboratory for the US Army Intelli-
qence Center and School's Combe, Developer's Support Facility.

i_ 19. KEY WORDS (Continue on reverie cldo ifnecelmary and Identify by block numbl, r)

_ Aqareqation; Parallel Processors; Compute,: Architecture,"

_ took/Unlock," Monitors

,.*__ 20. AMTRAClr" ('Camtl_uo em relmr_.) et_ tt ne_eeoerf md Idetdlty by block number)

For this study a spatial aqqreqation alqorlthm was implemented on
two separate parallel processor machines - the JPT. Mark _I Hyper-

. cube and the ANT. Sequent _a]ance. _o remove test bias, the data

_ set was pre-partitioned. The algorithm was successfully proarammer
and run on both machines, mechnical details - number o_ pre-

._ partitions, number of points per partition, program run time,
, comparison with sequential computers, etc. - are omitted.

i _ _ ,,

FORM 1473 EDITION OF ! MOW S$ IS OBSOLETEDO t JAN 7]

SECURITY CLASSIFICATION OF THIS PIt:%E (I)_en Dl_a Entered)

1989003794-002

7057-107

U.S. ARMY INTELLIGENCE CENTER AND SCHOOL

Software Analysis and Management System

Applications of Parallelism to Current Algorithms

for Intelligence Analysis

10 July 1987

Authors:

Mar.ha Ann G_iesel g. S£even Hu_Les

V'

Beth R. Moore

Approval: /__J/_

J/a_es W. G'illis, Subgroup Leader Edward J. Records, Supervisor

_lgorithm Analysis Subgroup USAMS Task

A. F. Ellman, Manager
Ground Data Systems Section

i_ Fred -Vote, Manager
_' Advanced Tactical Systems

i

JET PROPULSION LABORATORY
California Institute of Technology

I Pasadena, California

I JPL D-4719
i

1989003794-003

PREFACE

The work described in this publication was performed by the Jet

Propulsion Laboratory, an operatin 8 division of the California

Institute of Technology, under contract NAS7-918, RE182, A187 with the

National Aeronautics and Space Administration, for the United States

Army Intelligence Center and School.

This specific work was performed in ac:ordance with the I'_-87

statement of work (SOW #2).
%"

,J

|

!
_q

i iii

L.:

1989003794-004

ACKNOWLEDGEMENT

The authors wish to acknowledge the valuable

collaboration of John R. Gabriel, Argonne

National Laboratory, in the development of

this work.

Accession For

• NTIS GRA&I _#"

DTIC TAB []

Unaml ounced
Jus_. l float ion

By

I iv Avallabillty Codes

....... iAvai-i--an_/or

/Dlst i Speaial

• I,,j1

1989003794-005

EXECUTIVE SUMMARY

_ This study examines implementation of a spatial aggregation

algorithm on a hypercube and a shared memory machine with special

attention given to data partitioning. The differences in

implementation of the algorithm are due to data partitioning, data

dependence, and communication between processors. Two parallel

machines were used: The Cal Tech-JPL Mark II Hypercube, and the

Sequent Balance at the Advanced Computing Research Facility at
D

Argonne National Laboratory. The hypercube is a 32 node

concurrent processor consisting of 32 identical processors linked

by a communications network. The Sequent Balance is a high-

performance, general-purpose computer system that uses 2 to 12

National Semi-conductor Series 32000 CPUs in a tightly-coupled

multi-processing architecture. This study indicates that task

oriented algorithms with a low degree of data interdependence are

better suited to a shared memory implementation and data-driven

ig hyp pl_ a orithms to a ercube im ementation. _i:, _ , : _ _,
' t

D

5l
J

V

_5
B

1989003794-006

CONTENTS "

EXECUTIVE SUMMARY v

I. INTRODUCTION 1

i.i PURPOSE 1

1.2 INITIAL PROPOSAL 1

1.3 CONCURRENT PROCESSING APPLICATIONS 1

2. ALGORITHM DESCRIPTIONS 3

2.1 INTRODUCTION 3

2.2 AGGREGATION ALGORITHM 3

2.2.1 INTRODUCTION 3

2.2.2 DESCRIPTION 3

3. ARCHITECTURE DESCRIPTIONS 5

3.1 INTRODUCTION 5

3.2 HYPERCUBE 5

3.3 SEQUENT BALANCE 6

4. ALGORITHM IMPLEMENTATION 7

4.1 INTRODUCTION 7

4.2 HYPERCUBE IMPLEMENTATION 7

i 4.2.1 INPUT/OUTPUT DESCRIPTION 74.2.2 IMPLEMENTATION 7

i 4.3 SEQUENT BALANCE IMPLEMENTATION 8

i 4.3.1 MONITORS 8

4.3.2 IMPLEMENTATION 9

5. CONCLUSIONS i0

vi

1989003794-007

FIGURES

Figures 1 and 2 11

Figures 3 and 4 12

APPENDICES

A . GLOSSARY A-i

B. REFERENCES B-I

vii

D

1989003794-008

_: I. INTRODUCTION

I.i PURPOSE

The purpose of this document is to detail a study of
concurrent processing by the Concurrent Processing Subgroup of the
U.S. Army Intelligence Center and School (USAICS) Software
Analysis and Management System (USAMS) task in association with
the Advanced Computing Research Facility (ACRF) at Argonne
National Laboratory (ANL). The study centered on the effect of
different concurrent architectures (hypercube and shared memory)
on Intelligence and Electronic Warfare (IEW) algorithm

performance. - _!_o\

1.2 INITII.L PROPOSAL

Increasing data rates and a growing diversity of IEW
information sources create a void in current intelligence analysis
methods. New ways are needed to quickly correlate and aggregate
information being received from different types of sources (e.g.
radar, imagery, and eyewitness reports).

The immediate need for intelligence analysis systems which
', process information more rapidly was addressed by examining
,_' applications of data distribution techniques to an existing

i aggregation algorithm. Since Jet Propulsion Laboratory (JPL) /
USAMS has access to many of these unclassified algorithms, one was
chosen and implemented on the Caltech/JPL Hypercube and VAX 11/780
(development machine) and an ACRF shared memory computer, the
Sequent Balance.

i 1.3 CONCURRENT PROCESSING APPLICATIONS

'_ Parallel processing lends itself to certain types of
applications. In order to exploit the use of many processors in

, an application, several issues must be addressed. One issue is
b¶
,7 identifying the dependencies between data structures and modules.

If the degree of data dependence is large, the application is more
suited to sequential processing than to parallel processing. A
small number of data dependencies between modules indicates that

the algorithm lends itself to parallel processing because modules
do not have to rely on other modules and data structures for their

[_ information. [Ref. 3] Computations within each module and
'_ communication between modules proceed independently.

"" The best hardware for an application depends partly on thebI,

, answer to this data dependency issue. This requires mapping the
"' problem onto a variety of parallel architectures in order to find
, a good match for the specific application. [Ref. 3]
P,

b"

1

mI

m

...

1989003794-009

This report discusses mapping of a spatial aggregation
algorlthm onto hypercube _nd shared memory architectures. The
algorlthmwas prevlously used in a "production" mode on sequential
machines uuch as the CDC 6600, and on a vector processor
(the CRAY I).

|

I 2
R

] 989003794-0] 0

2. ALGORITHM DESCRIPTIONS

2.1 INTRODUCTION

Most algorithms that spend a substantial time in calculations
can be modified to run faster and more efficiently on
multiprocessors. If the data set is partitionable (able to be
grouped into separate portions in a meaningful way), it is likely
that parallel processing can speed up computation time. This is
the aspect of algorithms that we are focusing on.

For each "candidate algorithm", the data set and itsinteraction with the data structures needs to be analyzed. If the
data set can be melningfully partitioned into smaller, distinct
sets, clusters of associated data points can be sent to processing
elements (PEs) and the data can be processed by the algorithm in

_ parallel. If a section of the algorithm that spends a lot of time
_n computation can be isolated, then the PEs can each concurrently

_. work on the computation using the available data sets. These are
two of the areas of interest when implementing an algorithm on a
parallel architecture.

2.2 AGGREGATION ALGORITHM

2.2.1 INTRODUCTION

The algorithm that waE chosen for this study was an
aggregation algorithm. It dses a computationally intensive
mathematical criterion to decide which points in two dimensional

space belong together in a cluster and locates the "value center"
of the cluster. The algorithm is used because:

(I) it is used in real military simulation studies;
_. (2) it performs a function equivalent to aggregating
,. individual sighted objects (e.g. radios, trucks,

,_ helicopters); and
• (3) analysis on the uniprocessor for which it was

originally designed showed that 70% of the CPUtime is spent in one numeric calculation. This

calculation is performed repeatedly, usually on
independent data sets, making the algorithm a
good candidate for parallel implementation.

I 2.2.2 DESCRIPTION
The goal of the application program (using the aggregation

algorithm) is to partition the input data points into separate
• clusters. For each individual cluster, a value center is

1989003794-011

9m

_" determined to maximize a given value function.

,_ A pre-oartitioned data set with distinct, disjoint groups of

i points was used for this initial implementation. The data
partitions fall into distinct groups, thus clustering can be done
in parallel. Each data set is sent to a PE point by point. When

_[all points have been loaded on the PE, the clustering process
begins. A cluster is a group of points that fall within an R-

• ball (radius-ball) of the center point. Each point is tried as a

center point and a cluster is determined by using a precalculated

radius. The next step is to determine what other points within
the PE fall into the cluster. The number of clusters are

minimized by checking for redundancy (small cluster contained in
larger cluster) to determine which contain unique points.

'_ (See Figure i)

:! The nonredundant clusters are fed to a simplex (polytope)
maximization routine which uses a value function to calculate the
value center of each cluster Each PE, in turn wil _ return a"

value center and its associated value for each cluster _See Figure
2). This part of the program is the most time consuming for a
sequential processor.

t_

_o

i

!

1989003794-012

3. ARCHITECTURE DESCRIF.ONS

3.1 INTRODUCTION

The aggregation algorithm was implemented on two computers:

the Caltech/JPL Mark II Hypercube, and
the Argonne National Laboratory Sequent Balance.

The Mark II Hypercube uses a "hypercube" architecture and the
Sequent Balance uses a "shared memory" architecture. Each
computer will be discussed separately.

3.2 HYPERCUBE

The Caltech/JPu Mark II Hypercube (Cube) is a Multiple
Instruction Multiple-Data (MIMD) machine which uses an N-cube
interconnection network to link processing elements (nodes), each
with its own Central Processing Unit (CPU) and memory.

Cubes come in configurations of 2n nodes. Each node is_ connected to n other nodes in an n-cube configuration and
_,,j therefore communication between nodes requires at most n hops or
,_, the use of n-i intermediate nodes The n-cube connection is.% •

,' realized by considering the binary representations of each node

Two nodes are connected if their binary representation differ by
one bit. For example, given a 3-cube, er 2**3=8 node cube, node 0

.'_ (000) is connected to node 1 (001), node 2 (010) and node 4 (i00).
_. To pass information from node 0 (000) to node 6 (ii0) would take
_, two hops and use one intermediate node. Two possible paths that

exist include the path of nodes (0 2 6) and (0 4 6).

The Mark II cube has 32 nodes. Each node consists of an

8086/8087 processor pair and 256K bytes of memory. The CPU speeds
_ are .5 MIPS and .030 - •040 Mflops per node. Transfer rates
_ between channels is about 8 Mb/s.

_', The cube that was currently available for general development
was the Mark II cube on the Caltech Net (CITNET). This net

_' includes the LOGOS VAX 11/750 connected via CITNET to Miranda, the
_- intermediate host (IH) of the cube. LOGOS acts as the development

machine, where developers code, compile, and test using a
_ simulator, and ultimately download crosscompiled code to the cube

!_ via Miranda.

Two merits of a cube-connected architecture are as follows:

First, it is considered a good "in between"
connection architecture. By this is meant that both the
maximum distance between n,des and the number of

connections p_r node scale s a function of log(m),

1989003794-01g

where m is the number of nodes. In addition, the
internal bandwidth of the machine increases faster than

the number of nodes, the formula for connections being
m*log(m)/2.

Second, mesh connections up to and including the
dimensions of the cube can be realized allowing for
easier parallel algorithm development.

3.3 SEQUENT B_,LKNCE

The Balance 8000 is an expandable, high-performance, general
purpose computer system that employs from 2 to 12 National
Semiconductor Series 32000 CPU's in a tightly coupled
multiprocessing architecture. The operating system, DYNIX, is a
version of UNIX 4.2bsd that has been enhanced to support
multiprocessing and to run on Series 32000 CPUs. [Ref. 5] The

CPU's run at i0 MHz and may have their own local cache memory.

Primary memory, which is shared by all CPU's, may be up to 26
Mbytes. The primary memory, all CPU's and all peripheral
subsystems are connected via the SP8000 bus which has a maximum
bandwidth of 26.67 Mbytes per second.

Being based on UNIX, multiprocessing is achieved by managing
a queue of prioritized processes. The shared memory is a global
resource which holds a single copy of the operating system, with
the balance of the shared memory being assigned dynamically by
page to individual processes. Scheduling of the processes for
execution proceeds in a UNIX fashion, except that instead of a
single CPU, a pool of CPU's is available for execution.

The CPU's are considered symmetric in that any processing in
any state can execute on any available CPU. The system
dynamically assigns processes to CPU's, balancing the load to

_. take best advantage of each CPU. The shared memory concept
"_ allows an application developer to design an algorithm based on a
"_ queue of tasks to be performed. All tasks without
_ interdependancies can then be executed in parallel, increasing
_. throughput.
i

'k
P

%¢

k

i

1989003794-014

4. ALGORITHM IMPLEMENTATION

4.1 INTRODUCTION

Implementation of the aggregation algorithm was done on the

two parallel architectures described above. Each implementation

used the inherent features of this underlying architecture. In

particular, the down-loading of data, data partitioning, and data

dependency were different.

In working with the aggregation algorithm, it was discovered
that the problem demanded a task-oriented approach. In such an

approach, a larger problem is split up into smaller problems.

Both architectures handled this approach well, but the Balance is

architecturally more suited to task-oriented problems. The

ordering of tasks among the PE's did not affect program

efficiency. The differences in implementation of the algorithm

_. are stressed in the following discussions.

4.2 HYPERCUBE IMPLEMENTATION

4.2.1 INPUT/OUTPUT DESCRIPTION

"._ Applying a problem to the cube involves verifying that the

_' computational load for each node (or PE) is similar and that the
. time for internode communication required by the algorithm is

minimized. Two programs are needed to run a problem on the cube.

• The element (ELT) program resembles a sequential computer program
but invokes subroutine calls when it needs to communicate with

other processors or with the host VAX via theIntermediate Host

(IH) program. A copy of ELT executes on each node, whereas IH
runs cn the Intermediate Host machine.

Upon initializing the cube, each node is assigned a node

number. These numbers are used by the IH and the other nodes for
communication. When the IH communicates with the nodes or the

nodes communicate with themselves, a minimum amount of

information must be passed• A packet represents this information

• and is a set of 8 contiguous bytes.

_ When communication between the nodes or with the IH is

I desired, special commands for reading and writing are called.
_-; Other commands are available for communication between the nodes.

[Ref. 6]

i_'_" 4 •2 •2 IMPLEMENTATION

"-" Implementation of an algorithm on the cube requires that the

".' database of points be downloaded onto the PE's Since the

• database is pre-partitioned, there is no problem with load

_. 7
_..

_\..

1989003794-015

F
balancing. When there are an unknown nu_er of points being
downloaded to the PE's and there is no control over how many
points each of the PE's get, then load balancing becomes an
issue. Downloading the data is accomplished with single-stream
execution. Once all data is loaded, all processors work in
parallel on their clusters using the aggregation algorithm. When
finished, each PE sends back their results to the IH, which
completes the job by reporting the results, again by single-
stream execution. (See Figure 3)

Data is distributed evenly to the PE's, one point at a time.
One of the disadvantages of this method is the inability to
download a contiguous block of data to a single PE. This problem
was solved for this initial study by partitioning the data in
advance.

. Each PE has a copy of the program to work on along with its
_? data cluster. It is important to note that while each PE is

executing in parallel (working on its cluster set), individual
_ clusters contained in the cluster sets are also being worked on.
2

After the computations are complete, the PE's contain the
value centers of their assigned clusters. In order to send back
the points so that they will be interpreted correctly by the IH,
it is important that the data be "packaged" in the correct
format. Sending the address of the buffer containing the results
to the IH and allowing enough buffer space to receive all
information from each of the PE's is crucial for receiving
results on the IH.

4.3 SEQUENT BALANCE IMPLEMENTATION

4.3.1 MONITORS

There are several solutions to problems inherent in a
parallel processing environment.

"One solution that is efficiently implementable in every
._" parallel environment is the concept of monitors. A
'_ monitor is a conceptual abstraction composed of three

distinct parts: (1) the data that are shared, (2) the
operations that represent critical sections (sections of
code that can safely be executed by only a single
process at a time) associated with the shared data, and

(3) the code that is required to initialize the shared
._' structures. Only one process may be "in a monitor" at a
," given time. This is achieved conceptually by setting a
._ lock at the point where the operation is entered and

•_ releasing the lock at the point where the operation is
p exited. The fundamental property of monitors is to

t '

1989003794-016

ensure exclusive access to resources and to manage
synchronization requirements (waiting and slgnallng).
The higher-level synchronization primitives (locks,
ASKFOR monitor (see definitions)) are implemented as
macros that invoke lower-level macros. A macro package
is available that uses macros to implement the basic
operations for each machine at the ACRF and for each
language. This provides a portable implementation of a
few of the high-level synchronization patterns yielding
less complex code and smaller chance of error."
[Ref. 7 and 8]

4.3.2 IMPLEMENTATION

Our implementation utilizes the ASKFOR monitor. This
requires each PE to "ask for" the next available task to perform.
The monitor manages the pool of outstanding tasks. [Ref. 8] The
task at hand is to take a set of points (a cluster set) and to
group them into clusters. The value center of the cluster is
detei_ined and written to a data structure in shared memory.
The data structure update is controlled by the lock/unlock
synchronization primitive (this ensures mutual exclusion). The
monitor gives each PEa task to complete. When one PE completes
its task, it receives another task to be performed. Each PE uses
the nonlinear optimization routine and the value function to
determine the value center for its cluster. (See Figure 4) The
downloading of data and setting up the data structures is
performed with single-stream execution. Processing of the data in
the computational part of the program is done in parallel.

The Balance downloads data in contiguous blocks to the PE's.
This allows a partitioned data set to be efficiently distributed
amongst the PE's. Since the Balance uses shared memory, access to
shared resources is a crucial issue. In order for each PE to

receive an "unique" cluster set, it is necessary to use the
synchronization primitive of lock/unlock to ensure exclusive
access to the shared data. The locking mechanism is also used
when the PE's write the value centers of their clusters to the
result array shared by all PE's.

P

P

1989003794-017

I

_ 5. CONCLUSIONS

There are many possible ways to adapt existing sequential
algorithms to concurrent architectures. The approach taken
depends on both the type of algorithm and the available
architecture. Despite differences in approaches, there exist

_I similarities in problems that lend themselves to parallel

processing. Data that is partitionable into distinct, meaningful
groups and computation intensive algorithms are two attributes of

I a problem which allow it to efficiently use concurrency.

The of the data structures for thedevelopment partitioned
_. data set and the downloading of the partitioned data to the PE's

was easier and more straightforward in this initial pre-
partitioned case on the Sequent Balance shared memory machine than
on the cube. The use of monitors on the Balance and the
accessibility of memory eased implementation. I/O was awkward
with the cube architecture, but some of those problems are
rectified in the new Mark III Hypercube.

Since the Balance relies on shared memory data dependence is

I an important issue. The accessibility of resources and data
c structures is controlled by monitors and locks. This is not

_ necessary with the cube. Separate data structures for each
< processing element are necessary for parallel processing of the

:. algorithm on the Hypercube. Thus, this implementation indicated
that task oriented algorithms are more suited for the Sequent

i Balance as long as the data has a low degree of interdependence,
and the Hypercube is better suited for algorithms that lend

; themselves to data driven implementations. Clearly, with readily
partitionable data, shifting the intensive computation to
concurrently processing PE's is more efficient than sequential

_ processing. Data partitioning is the key for both
implementations. Since partitioning is done sequentially in a

preprocessing phase, little is gained by either implementation if
partitioning is "too difficult". In particular, this would be the

•- case if the data partitioning problem is equivalent in
,._ computational complexity to the non-linear optimizations performed
'_ in the PE's. You have mearly backed the problem up to its dual,_
I The next step of this research is to study the mapping of this

dual problem into the architectures.

i

1989003794-018

I s I

part _'t i°n_ I I
I
I I [

I ,,

) Figure 1. Pre-partittoned data set containing cluster sets

)

i ""@
@

@e
@Q

Value center (center of mass)

)

I i i i ill

Figure 2. Value Center for one cluster

- 11
)

1989003794-019

DILINC||I VO1UL' pclinls;
outpul ted

I) Read data file |_

DATA into intermediate _ .. "'-"]--

(Partitioned) host and send data _.DI
I_ points to elements _'_'_-_-

1) Determine candidate I) Run
Figure 3. clusters based Optimizer

on assumed center for each

point and a radius cluster

QUEUE OF value point.
TASKS outputte0

_ !) Monitors the distri- _]_

,_ DATA bution of clusters _ .o-..:,- /r-

(Parlitloneo) as a queue of tasks

P

... Figure 4, _) Determine candidate 11 Runclusters based Opt |mlzer

12 on assumed center for each

point and a radius cluster

1989003794-020

APPENDIX A

GLOSSARY

The following is a list of terms as used in this report.

Process - synonymous with task. It is an autonomic unit of
activity in a computer system.

Sequential Process - an entity that executes a series of tasks on
a uni-processor (a compute_" with one central processing
unit). This entity usually consists of a data structure and
a sequential program that operates on it. [Ref. 1] Within
the sequential program, statements are executed one by one.
The results of program execution with the same data set is
always the same; there is no program speed up as long as the
operations are carried out in the same sequence. [Ref. 1]
This is not true of a concurrent process.

Concurrent Process - more than one process working on a single
problem at the same time. Concurrent Processing includes
both Parallel Processing and Distributed Processing.

Multiprocessing - executing more than one process by switching
back and forth between the processes.

Parallel Processing - several processes executing at the same
time on one or more different problems. This usually

!_ happens on a multiprocessor architecture, where several

"I autonomous processors can each execute separate programs.

Shared Memory - an area of memory that is used by more than one
processor.

Data Dependency - when data produced by one part of a concurrent
I_ process is used by anether part. [Ref. 2]
j_

Algorithm - a precise method usable by a computer for the
solution of a problem. It is composed of a finite set of

I_ steps, each of which may require one or more operations.
[Ref. _]

_. Cluster - a term that refers to a group of points that fall
within an r-ball (radius-ball) of the center point of the
group.

Cluster Set - a set of clusters.

_ Lock/Unlock - Provide mutual exclusion among processes (a shared
b memory high-level synchroniz._tion pattern).

A-I

1989003794-021

Askfor Monitor - Coordinate a pool of processes working on a pool
of subproblems (a shared memory high-level synchronization
pattern).

Uni-Processor Architecture - a computer with a single central
processing unit (CPU).

MultIprocessor Architecture - a computer with a number of
processing elements (PE's).

Data Driven - Each CPU is dependent on the data that is fed to it
from other CPU's. Tasks are assigned to CPU's before the
algorithm is executed.

Task Oriented - The operating system dispatchs tasks as the CPU's
become available.

b_

A-2

1989003794-022

&PPENDTX B

REFERENCES

1. Hansen, Per Brinch, "The Architecture of Concurrent
Proqrams", Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

2. "DEC Professional", Professional Press, Inc., Spring
House, PA, 1987.

3. Moldovan, Dan I., "Modern Parallel Processing",
University of Southern California, 1986.
(Manuscript due to be published)

4. Horowitz, Ellis and Sahni, Sartaj, "_undamentals of
Computer Alqorithms", Computer Science Press, Inc., 1978.

5. Sequent Computer Systems, Inc., "BalancQ 8000 System
Technical SummarT", 1984.

6. Enguehard, S., "A Beqinner's Guide to Proaram_q the
Caltech HvDercube, Volume i", Hm 120, Dec. 1984.

7. Lusk, Ewing, (Reference from a talk on Parallel Programming
Methodology at Jet Propulsion Laboratory), Advanced
Computing Research Facility, Argonne National Laboratory,
1986.

8. Lusk, E. L., Stevens, R. L., Overbeek, R. A.,
"A Tutorial on the Use of Monitors in C: writinq Portable
Code for Mult_Pro_esso_s", Advanced Computing Research
Facility, Argonne National Laboratory.

i

I B-1

1989003794-023

